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Abstract. The anisotropic two-layer Ising model is studied by the phenomenological renormalization group
method. It is found that the anisotropic two-layer Ising model with symmetric couplings belongs to the
same universality class as the two dimensional Ising model.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 02.70.-c Computational techniques

1 Introduction

For many years, the lattice statistics has been the sub-
ject of intense research interests. Although, at zero mag-
netic field, there is an exact solution for the 2-dimensional
Ising model [1], however, there is no such a solution for
the two-layer Ising model. The two-layer Ising model as
a simple generalization of the 2-D Ising model has been
studied for a long time [2–6]. The two-layer Ising model
as a simple model for the magnetic ultra-thin film has
various possible applications to real physical materials. It
has been found that capping PtCo in TbFeCo to form a
two-layer structure has applicable features, for instance,
raising the Curie temperature and reducing the switching
fields for magneto-optical disks [7]. Cobalt films grown
on a Cu (100) crystal have highly anisotropic magnetiza-
tion [8] and could be viewed as layered Ising models. In
recent years, some approximation methods have been ap-
plied to this model [9–17]. A critical line has been found
in all these studies. As is expected the Curie tempera-
ture is very sensitive to the inter-layer interaction. Many
discussions have been directed to the shift exponent at
the decoupling point. Abe [3] and Suzuki [4] have pre-
dicted γ = 7/4 for the isotropic model many years ago.
Recent computational results are in agreement with ear-
lier results [14,15,18]. Apart from the shift exponent, it
is also interesting to study the critical behaviour along
the critical line. The model has the same critical expo-
nent at the two ends of the critical line corresponding
to the solvable decoupling limit and the infinite inter-
layer coupling limit. But it is clear that the decoupled
system has a higher symmetry than the coupling layers,
hence one cannot assume a priori that the two layer Ising
model belongs to the one-layer Ising universality class.
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It has been proposed that the critical exponents would
vary continuously along the critical line [15]. However,
there are also arguments in favour of unchanged expo-
nents [11,26]. The question of the universality class of the
two coupled, identical Ising layers was essentially settled
in the seventies by van Leeuwen [26] who presented a scal-
ing argument to explain why the Baxter 8-vertex model
has continuously varying exponents. The same argument
and the symmetry of the order parameter suggest that a
system consisting of two coupled Ising model is likely to
be in the universality class of the two-dimensional Ising
model, however, the scaling arguments obviously are not
rigorous and a numerical verification is useful. It is our
purpose to provide a reliable prediction for the critical
exponents based on the phenomenological renormalizaiton
group method [19]. The term ‘phenomenological renormal-
izaiton group’ is sometimes used to denote a technique
due to Nightingale [20] that is particularly powerful in
the case of two-dimensional systems for which one can
construct a transfer matrix. This technique has been ap-
plied with great success to the eight-vertex model [21], the
square Ising antiferromagnet [22], the hard-square lattice
gas [23], and the triangular Ising antiferromagnet [24]. In
this method, it is essential to compute the largest and the
next largest eigenvalues of transfer matrix.

2 Method

For the two-layer Ising model with nearest neighbor inter-
actions we are able to construct the transfer matrices and
use it to calculate the critical exponents. Consider a two-
layer square lattice with the periodic boundary condition
composed of slices, each with two layers, each layer with
p rows, where each row has r sites. Each slices has then
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2 × p × r = N sites and the coordination number of all
sites is the same (namely 5). In the two-layer Ising model,
for any site we define a spin variable

σ1(2)(i + r, j) = σ1(2)(i, j) (1)

σ1(2)(i, j + p) = σ1(2)(i, j). (2)

In this paper, we discuss the anisotropic ferromagnetic
case in a magnetic field with the nearest neighbor cou-
pling Jx and Jy, where Jx and Jy are the nearest neighbor
interactions within each layer in the x and y directions, re-
spectively, and with inter-layer coupling Jz. We take only
the interactions among the nearest neighbors into account.
The configuration energy for the model may be defined as,

E(σ)
kT

= −
r∑

i=1

p∑
j=1

(
2∑

n=1

[Jxσn(i, j)σn(i + 1, j)

+Jyσn(i, j)σn(i, j + 1)] + Jzσ
1(i, j)σ2(i, j)

+ h
(
σ1(i, j) + σ2(i, j)

))
. (3)

The canonical partition function, Z(J), is

Z(J) =
∑
{σ}

e
−E(σ)

kT . (4)

The transfer matrix element connecting the
stripes s1, s2, s3, s

′
1, s

′
2, s

′
3 and t1, t2, t3, t

′
1, t

′
2, t

′
3 then

can be written in the form

〈s1, s2, s3, s
′
1, s

′
2, s

′
3|T |t1, t2, t3, t′1, t′2, t′3〉 =

exp
[
Jx(s1s2 + s2s3 + s3s1 + t1t2 + t2t3 + t3t1)

+ Jy

3∑
i=1

(sis
′
i + tit

′
i) + JZ

3∑
i=1

(siti) + h

3∑
i=1

(si + ti)
]

(5)

where Jx Jy, and Jz are the couplings and h is a magnetic
field.

The transfer matrix is a 22n × 22n matrix which for
the above example it is a 64 × 64 matrix and its largest
eigenvalue can be used to obtain the partition function of a
semi-infinite strip (2×n×∞). In particular the correlation
length ξ2n is given by

ξ−1
m (J, h) = Log

∣∣∣∣∣Λ
(m)
0

Λ
(m)
1

∣∣∣∣∣ , m = 2n (6)

where Λ
(m)
0 , Λ

(m)
1 are the largest and the next largest

eigenvalues of T in magnitude. Over two decade ago [19]
the thermodynamic function of such semi-infinite stripes
(in two dimensions) were calculated from the largest eigen-
values of T . Although the thermodynamic functions of
these strips were informative, it was difficult to extract
from them the critical exponents of an infinite system.
Nightingale [20] showed how this could be achieved by

viewing the correlation functions ξm(J, h) and ξm′(J ′, h′)
of two strips of different widths as being related by renor-
malization group transformation. The scaling of such a
transformation implies

ξm(J, h)
m

=
ξm′(J ′, h′)

m′ · (7)

Strictly speaking, scaling implies an equation like this with
the same function ξm(J, h) on both sides. Equation (7)
with different functions ξm and ξm′ on both sides is to be
viewed as an approximate renormalization-group trans-
formation, one which improves as the width of the strips
increase. Both correlation functions ξm and ξm′ can be
calculated from equation (6) so that equation (7) and one
additional assumption define the recursion relations

J ′ = J ′(J, h), H ′ = H ′(J, h), (8)

which can be solved for fixed point values and linearized
about them to obtain the critical exponents in the stan-
dard way. The problem now reduces to calculating the
eigenvalues of Tkl for a semi-infinite strip of width m = 2n.
The correlation function invariably occurs in what follows
in the combination ξm/m so it is convenient to denote this
by a single symbol

ζm(J, h) = ξm(J, h)/m. (9)

We first consider the basic relation of equation (7) here
written

ζm′(J ′, h′) = ζm(J, h) (10)

in zero magnetic field. The correlation length for two dif-
ferent strip widths is calculated and a fixed point JC de-
termined from

ζm′(J ′, 0) = ζm(J, 0). (11)

By linearizing equation (10) in J about JC for h = 0 we
obtain the thermal exponent Yt from[ m

m′
]Yt

=
∂ζm/∂J

∂ζm′/∂J ′ · (12)

Equation (7) can also be linearized in h at J = JC . Using
the fact that ζm is an even function of h we obtain

[ m

m′
]2Yh

=
∂2ζm/∂h2

∂2ζm′/∂h′2 · (13)

The Mathematica package is used to diagonalize the re-
duced transfer matrix [25], from which the eigenvalues are
calculated with a high precision for different values of Jx,
Jy and Jz . Our results for JC , Yt and Yh are shown in the
following tables. All the critical exponents can be calcu-
lated by the following relations

Yt = 2at, Yh = 2ah (14)

α = 2 − 1
at

, β =
1 − ah

at
(15)

γ =
2ah − 1

at
, δ =

ah

1 − ah
(16)
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Tables 1, 2, 3, 4. Calculated critical properties of the anisotropic two-layer Ising model.

Table 1
m/m′ Jy : Jx : Jz JC Yt Yh

4/6 0.360525 1.006837 1.880667
4/8 0.348146 1.004480 1.878220
4/10 0.340260 1.003337 1.876550
6/8 1:1:1 0.335967 1.002750 1.875640
6/10 0.330325 1.001500 1.874148
8/10 0.324720 1.000142 1.872350

0.316046 1.001592 1.875814
Extrapolated

Exact 1.000000 1.875000
2-D Ising Model

Table 2
m/m′ Jy : Jx : Jz JC Yt Yh

4/6 0.240350 1.006837 1.880202
4/8 0.232097 1.004814 1.878219
4/10 0.226840 1.003340 1.876554
6/8 1:1.5:1.5 0.223978 1.002751 1.875660
6/10 0.220216 1.001490 1.874134
8/10 0.216480 1.000146 1.872251

0.210698 1.001586 1.875808
Extrapolated

Exact 1.000000 1.875000
2-D Ising Model

Table 3
m/m′ Jy : Jx : Jz JC Yt Yh

4/6 0.721055 1.006837 1.880208
4/8 0.696291 1.004813 1.878219
4/10 0.680520 1.003335 1.876555
6/8 1:0.5:0.5 0.671934 1.002750 1.875640
6/10 0.660650 1.001500 1.874147
8/10 0.649441 1.000146 1.872462

0.632094 1.001592 1.875818
Extrapolated

Exact 1.000000 1.875000
2-D Ising Model

Table 4
m/m′ Jy : Jx : Jz JC Yt Yh

4/6 0.180262 1.006837 1.880667
4/8 0.174072 1.004820 1.878202
4/10 0.170130 1.003342 1.876554
6/8 1:2:2 0.167983 1.002751 1.875627
6/10 0.165162 1.001494 1.874133
8/10 0.162360 1.000163 1.872252

0.158024 1.001590 1.875805
Extrapolated

Exact 1.000000 1.875000
2-D Ising Model

Table 5. All of the critical exponents for the two-layer Ising model.

Jy : Jx : Jz α β γ δ
1:1:1 0.003179 0.12399 1.7488 15.1049

1:1.5:1.5 0.003167 0.12399 1.7488 15.1041
1:0.5:0.5 0.003179 0.12398 1.7488 15.1054

1:2:2 0.003175 0.12399 1.7488 15.1037
Exact 0 0.125 1.75 15

2-D Ising Model
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The calculation have been done for a lot of points
along the critical line for the symmetric two layer Ising
model with Jx, Jy for the coupling constants in the
x and y directions in each layer (parallel couplings
in the up and down layers are equal) and with in-
ter layer coupling constant Jz. For extrapolating the
data a simple method can be used, for example in Table 3,

Jx

Jy
= 0.5

Jx

Jz
= 1

Jy

Jz
= 2. (17)

The following code in Mathematica can be used to
obtain Yh

Fit
[{{

4
10

, 1.876555 Log
[

4
10

]}
,

{
6
8
, 1.87564 Log

[
6
8

]}
,

{
6
10

, 1.84147 Log
[

6
10

]}
,

{
8
10

, 1.872462 Log
[

8
10

]}}
, {Log[x]}, x

]
(18)

which yields Yh = 1.87582.

3 Conclusion

It is clear that the two layer Ising model is in the same
universality class as the two dimensional Ising model, the
error is less than 0.15%. We conclude that the critical ex-
ponents are constant along the critical line and the model
is in the same universality class as the two dimensional
Ising model.

Our thanks go to the Isfahan University of Technology and
Institute for Studies in Theoretical Physics and Mathematics
for their financial support.
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